Introduction to Java — Objects English Name:

ASSignment: C la SS Ra n domi zZe I n dEXO r de r ©2025 Chris Nielsen — www.nielsenedu.com

This question involves the creation and use of a random index sequence generator for sampling without
replacement. A RandomIndexOrder object generates a random permutation of indices from 0 to n-1 and
allows sequential access to these indices. The class supports the following behaviors:

* Creating a new generator with a specified number of indices
* Getting the next index in the random sequence

* Reporting the number of indices already returned

* Reporting the number of indices remaining

The following table contains a sample code execution sequence and the corresponding results.

Statements Value |Comment
Returned
RandomIndexOrder r = (none) |Creates a new random sequence generator for 5
new RandomIndexOrder(5); indices (0 through 4)
r.next(); 3 Returns the first random index in the sequence. In

this case, 3 is returned.

r.getReturnedCount(); 1 Returns the count of indices already returned. One
index has been returned so far.

r.getRemainingCount(); 4 Returns the count of indices still available. Four
indices remain to be returned.

r.next(); 1 Returns the next random index in the sequence. In
this case, 1 is returned.

r.getReturnedCount(); 2 Two indices have been returned.

r.next(); 4 Returns the next random index.

r.next(); 0 Returns the next random index.

r.next(); 2 Returns the next random index. This is the fifth

and final index.

r.getReturnedCount(); 5 All five indices have been returned.
r.getRemainingCount(); 0 No indices remain to be returned.
r.next(); -1 Returns -1 when no more indices are available.

Write the complete RandomizeIndexOrder class. Your implementation must meet all specifications and
conform to the example.

Page 1 of 2

Introduction to Java — Objects English Name:

ASSignment: C la SS Ra n domi zZe I n deXO r de r ©2025 Chris Nielsen — www.nielsenedu.com
1| public class RandomIndexOrder {
2 private int[] shuffledIndexes;
3 private int currentIndex;
4 public RandomIndexOrder(int size) {
5 shuffledIndexes = new int[size];
6 currentIndex = 0;
7 populateIndexes();
8 }
9 public int next() {
10 if(currentIndex < shuffledIndexes.length) {
11 int index = shuffledIndexes[currentIndex];
12 currentIndex++;
13 return index;
14 } else {
15 return -1,
16 3
17 }
18 public int getReturnedCount() {
19 return currentIndex;
20 }
21 public int getRemainingCount() {
22 return shuffledIndexes.length - currentIndex;
23 }
24 public boolean hasNext() {
25 return currentIndex < shuffledIndexes.length;
26 3
27 private void populateIndexes() {
28 // Track filled positions
29 boolean[] filled = new boolean[shuffledIndexes.length];
30 for(int value = 0; value < shuffledIndexes.length; value++) {
31 int index;
32 // find a random index that has not been written to
33 do {
34 index = (int)(Math.random() * shuffledIndexes.length);
35 } while(filled[index]);
36 filled[index] = true;
37 shuffledIndexes[index] = value;
38 }
39 }
40| }

Page 2 of 2

