
Introduction to Java – Objects English Name: ____________________

Assignment: class RandomizeIndexOrder ©2025 Chris Nielsen – www.nielsenedu.com

This question involves the creation and use of a random index sequence generator for sampling without
replacement. A RandomIndexOrder object generates a random permutation of indices from 0 to n-1 and
allows sequential access to these indices. The class supports the following behaviors:

• Creating a new generator with a specified number of indices
• Getting the next index in the random sequence
• Reporting the number of indices already returned
• Reporting the number of indices remaining

The following table contains a sample code execution sequence and the corresponding results.

Statements Value
Returned

Comment

RandomIndexOrder r =
 new RandomIndexOrder(5);

(none) Creates a new random sequence generator for 5
indices (0 through 4)

r.next(); 3 Returns the first random index in the sequence. In
this case, 3 is returned.

r.getReturnedCount(); 1 Returns the count of indices already returned. One
index has been returned so far.

r.getRemainingCount(); 4 Returns the count of indices still available. Four
indices remain to be returned.

r.next(); 1 Returns the next random index in the sequence. In
this case, 1 is returned.

r.getReturnedCount(); 2 Two indices have been returned.

r.next(); 4 Returns the next random index.

r.next(); 0 Returns the next random index.

r.next(); 2 Returns the next random index. This is the fifth
and final index.

r.getReturnedCount(); 5 All five indices have been returned.

r.getRemainingCount(); 0 No indices remain to be returned.

r.next(); -1 Returns -1 when no more indices are available.

Write the complete RandomizeIndexOrder class. Your implementation must meet all specifications and
conform to the example.

Page 1 of 2

Introduction to Java – Objects English Name: ____________________

Assignment: class RandomizeIndexOrder ©2025 Chris Nielsen – www.nielsenedu.com

1

2
3

4
5
6
7
8

9
10
11
12
13
14
15
16
17

18
19
20

21
22
23

24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39

40

public class RandomIndexOrder {

 private int[] shuffledIndexes;
 private int currentIndex;

 public RandomIndexOrder(int size) {
 shuffledIndexes = new int[size];
 currentIndex = 0;
 populateIndexes();
 }

 public int next() {
 if(currentIndex < shuffledIndexes.length) {
 int index = shuffledIndexes[currentIndex];
 currentIndex++;
 return index;
 } else {
 return -1;
 }
 }

 public int getReturnedCount() {
 return currentIndex;
 }

 public int getRemainingCount() {
 return shuffledIndexes.length – currentIndex;
 }

 public boolean hasNext() {
 return currentIndex < shuffledIndexes.length;
 }

 private void populateIndexes() {
 // Track filled positions
 boolean[] filled = new boolean[shuffledIndexes.length];
 for(int value = 0; value < shuffledIndexes.length; value++) {
 int index;
 // find a random index that has not been written to
 do {
 index = (int)(Math.random() * shuffledIndexes.length);
 } while(filled[index]);
 filled[index] = true;
 shuffledIndexes[index] = value;
 }
 }

}

Page 2 of 2

